Critical Design Considerations For Adsorptive Media For Arsenic Removal

Eric Winchester, Vice President ADI International Inc.

Critical Design Considerations

U Process Design

Sizing of Adsorber Vessels

Secondary Process Considerations

Design Input Data

- U Chemical analysis of the water.
- U Treated water compliance standard.
- u Regulatory design standards.
- u Residuals disposal.
- O Design flow rates and consumption.

Design Input Data Chemical Analysis

- Arsenic and pH: adsorption capacity increases with As conc.
 And decreases with high pH.
- Certain elements may interfer with adsorption capacity - silica, iron, sulfate, chloride.
- o Other metals are adsorbed also.

Design Input Data Compliance & Design Standards

- U EPA MCL 10 ppb
- U Other Agencies: 3 to 10 ppb
- Wlin/Max operating parameters, e.g., gpm/sf
- **UNSF Standard 61**
- **U EPA/NSF ETV Program**
- o Other, e.g., ASME code

Design Input Data Residuals

- U Initial media conditioning backwash, rinse, disinfection.
- U Normal backwash and rinse during use.
- U Regeneration chemicals.
- υ Spent media.

Design Input Data Flow Rates & Consumption

- Well pump capacity used to hydraulically design system physical size of filters, piping, chemical feed.
- υ Consumption used to estimate media life and operating cost.

Design Options

- v Selection of adsorptive media.
- U With or without pH adjustment.
- υ Spent media regeneration, or onetime use & disposal.
- u Series or parallel operation.
- Manual or automatic control.

Design and Cost Considerations

- U Empty Bed Contact Time (EBCT).
- U Series or parallel operation.
- u pH adjustment.
- u Regeneration capability.
- Oxidation As III to As V.

SYMBOLS

```
- TREATED WATER FLOW RATE (gpm)
      - TREATMENT BED DIAMETER (ft.), d = \sqrt{4V/\pi h}
      - TREATMENT BED DEPTH (ft.)
      - TREATMENT BED VOLUME - sd2h (ft.3)
    M<sub>d</sub> - DENSITY OF TREATMENT MEDIA (ib./ft. )
    Mw - WEIGHT OF MEDIA (1bs.)
    D - OUTSIDE DIAMETER OF TREATMENT VESSEL (ft.)
    d - DEPTH OF DISHED PRESSURE HEAD (ft.)
   H - OVERALL HEIGHT OF SKID MOUNTED TREATMENT VESSEL (ft.)
   SS - STRAIGHT SIDE (ft.)
GIVEN
   d > h/2, 3'-0" < h < 6'-0"
   H = 2 d_{H} + h + h/2 + 6" + 1"
   D = d + 1^{\circ}
   M<sub>d</sub> = 45 lb./ft (VARIES WITH MEDIA IN VESSEL)
   M_w = M_d \times V = 45V (lb.)
```

Figure 3-5. Treatment Bed and Vessel Design Calculations

Design & Cost Considerations EBCT

- U Range 3 to 10 minutes
- U Activated alumina 5 min +
- O ADI'S MEDIA G2 uses 8 to 10 min, results in a unit flow rate of 2.5 to 3 gpm/sf
- **The lower the EBCT, the higher the unit flow rate.**

Design & Cost Considerations EBCT & Bed Volumes

- the size of vessels.
- Adsorption capacity determines the no. of bed volumes or the quantity of water treated in gallons before arsenic break-through.

Design & Cost Considerations Bed Volumes

- Why not use a longer EBCT and larger bed volume to increase the total amount of treated water before break-through?
- U Initial cost may be a factor.
- U Ask whether lower service flow rates (gpm/sf) can be tolerated.
- Ask whether there are any minimum flow limitations under NSF 61 standard, i.e., gpm/cf of media or a max use level.
- There is a diminishing return on increasing EBCT related to performance and adsorption capacity.

Design & Cost Considerations Series or Parallel

- v Advantage of series:
- U Redundancy and safety.
- u Maximum use of media capacity.
- More flexible for scheduling of media change-outs.

Design & Cost Considerations Series or Parallel

- v Disadvantages of series:
- u Increased capital cost due to number and size of filters.
- u Larger foot print.
- o Higher pressure drop.
- Need for larger backwash rates.

Design & Cost Considerations pH Adjustment

- v Disadvantages:
- Uncreased complexity of operation.
- U Trained operators needed to address handling & safety issues.
- U Loss of pH control may cause arsenic desorption of some media (ask the vender for details).

Design & Cost Considerations pH Adjustment

- U Advantages:
- Un many cases, results in lower As concentration in treated water.
- Uncreased adsorption capacity & hence longer media life.
- Same pH chemicals are then available for media regeneration.

Design & Cost Considerations Regeneration

- v Disadvantages:
- u Increased complexity.
- U Another waste stream for disposal.
- May not be economical for non-pH adjusted water.

Design & Cost Considerations Regeneration

U Advantages:

- U Substantial increase in media life (Not all media can regenerated).
- u Less frequent media change-outs.
- **U** Lower operating cost.

Design & Cost Considerations Oxidation - As III to As V

- Ochlorine used for disinfection will oxidize As III to As V for easier removal and longer bed life.
- For some media, exposure to chlorine will degrade performance, e.g., activayed alumina.

Sizing of Adsorber Vessels

- U Empty Bed Contact Time (EBCT).
- v Media bed depth.
- u Bed expansion.
- Unit flow rate.
- υ Parallel or series operation.

Secondary Process Considerations

- u Need for pH feed-back control and alarms when pH corrected.
- u Re-adjust pH after treatment?
- U Manual vs automatic control.
- U Filter internals no different than conventional multi-media filters.
- **OPre-treatment.**

Critical Design Considerations For Adsorptive Media For Arsenic Removal

Eric Winchester, Vice President ADI International Inc.

www.adi.ca